a^2=(3a^2)+6a+-1224

Simple and best practice solution for a^2=(3a^2)+6a+-1224 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for a^2=(3a^2)+6a+-1224 equation:



a^2=(3a^2)+6a+-1224
We move all terms to the left:
a^2-((3a^2)+6a+-1224)=0
We use the square of the difference formula
a^2-(3a^2+6a-1224)=0
We get rid of parentheses
a^2-3a^2-6a+1224=0
We add all the numbers together, and all the variables
-2a^2-6a+1224=0
a = -2; b = -6; c = +1224;
Δ = b2-4ac
Δ = -62-4·(-2)·1224
Δ = 9828
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{9828}=\sqrt{36*273}=\sqrt{36}*\sqrt{273}=6\sqrt{273}$
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-6\sqrt{273}}{2*-2}=\frac{6-6\sqrt{273}}{-4} $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+6\sqrt{273}}{2*-2}=\frac{6+6\sqrt{273}}{-4} $

See similar equations:

| -4/5x=16-15 | | 4(-4)-3y=0 | | 4x^2+5=3x^2+30 | | 36=5g+4g | | (3a^2)+6a+-1224=0 | | 3(4)+2y=9 | | 3(2)+2y=9 | | 3(x+2)+8x=11x+6 | | 3(-2)+2y=9 | | 400=1/2(25)(x) | | 15x-48=0 | | 3x-13=2x+31 | | 3y-0=5 | | -2(3s-2)-4=-3(4s+4)-5 | | u-3=6 | | 8p-12=4 | | 4(4)-y=-5 | | -3(2s-6)-18=-2(8s+9)-3 | | 7y-15+2y7=9y-15 | | 4(0)-y=-5 | | 2x/3-6=12 | | 2(x-4)=4(2x+4) | | 4(-2)-y=-5 | | 5x-44=-14 | | (2/3)x-6=12 | | Y=1.25x+19 | | -3(2s-6)-18=2(8s+9)-3 | | 4(-4)-y=-5 | | 4(2x+8)=9(3x-5) | | 7x+2/x-3=1 | | -(7x+2)-(-6x-6)=5 | | X-7=3x-17 |

Equations solver categories